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Abstract 
 

Stockham, one of the most widely used FFT 

algorithms, does not need reversal permutation, but 

memory access patterns are unpredictable. Because 

of the cache-unfriendly memory access patterns, the 

performance of Stockham could be degraded. 

Processing-in-Memory approach could alleviate the 

memory access overhead and allow Stockham 

algorithm to be accelerated. We evaluated the 

effectiveness of Processing-in-Memory with Gem5 

full system simulator. As a result, the maximum 

performance gain was 4.22 times faster than CPU 

only environment. 
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1. Introduction 
 

Fast Fourier Transform(FFT) is used for various 

fields including engineering, scientific computing, 

and financial technology. There are many algorithms 

for FFT, but Stockham is one of them. Stockham 

iteratively performs FFT operation without reversal 

permutation[1]. However, the memory access 

patterns of Stockham are not sequential and hard to 

predict. The performance of Stockham is related to 

not only processing throughput but also memory 

bandwidth. 

Processing-in-Memory(PIM) is a approach which 

has processing elements near memory. Recently, 

there are numerous studies on PIM for accelerating 

applications[2][3]. Host processor could offload 

some computations into PIM-side processing 

elements. The processing element of PIM does not 

pass through the host processor’s cache, PIM 

prevents unnecessary cache thrashing. With parallel 

processing elements, PIM takes full advantage of the 

memory bandwidth.  

In this paper, we present a novel PIM architecture for 

Stockham FFT. Our architecture is evaluated with 

Gem5[4] full system simulator, and the results show 

that Stockham FFT could be processed efficiently 

with PIM approach. 

 

2. Stockham FFT Algorithm 
 

Figure 1 shows the iterate execution flow and the 

memory access patterns of Stockham FFT algorithm. 

In this figure, the input size of FFT is set to 8. 

Increasing the input size, Stockham runs more 

iterations and the memory access pattern would be 

more complicated. 

 

 
Figure 1. Memory access patterns of Stockham 

 

Each iteration of Stockham could not be 

parallelized, on the other hand, the operations within 

an iteration could be parallelly performed. However, 

it is not easy to process in parallel, because the 

memory access pattern changes every iteration. 

The computation of each operation consists of a 

cosine function, a sine function for obtaining the real 

and imaginary part from a complex number, and 

multiplying between complex numbers, and some 

simple arithmetic operations. These operations could 

be heavy for general purpose processors.   

 

3. PIM architecture for Stockham FFT 
 

Proposed PIM architecture is shown in figure 2. 

For processing near memory, we added some control 

blocks and processing element into the conventional 

memory controller.  



 
Figure 2. Proposed PIM architecture 

 

In this system, the main memory is PIM which 

contains processing elements for accelerating 

Stockham FFT. For offloading PIM computation to 

PIM controller, we implemented a Linux device 

driver. Driver passes PIM requests containing the 

addresses of source and destination and the size of 

data. 

To minimize the size of the processing element, 

we only parallelized a single operation within an 

iteration. Cosine function and sine function, which 

are the heaviest operations of Stockham algorithm, 

are parallelly processed and some double-precision 

floating point ALUs are added. The number of used 

units for the processing element is shown in Table 1. 

 

Table 1. The number of each unit consists of 

the processing element 

Cosine logic 1 

Sine logic 1 

Double-precision 

floating point ALU 

6 

Integer ALU 1 

 

4. Experiment 
 

Our evaluation is based on Gem5 full system 

simulator. We implemented the proposed PIM 

architecture into the conventional DRAM controller. 

Detailed simulation configuration is shown in Table 

2. We assumed several configurations such as ALU 

cycles. 

 

Table 2. Simulation Environment 

Host processor ARM Cortex A15 @ 1GHz 

Cache L1-I/Dcache: 2-way 16KB,   

DRAM DDR4-2400, 17-17-17  

Double-precision 

floating point ALU 

cycles 

4(ADD, SUB), 6(MUL), 

25(DIV), 400(Sin), 

420(Cos) 

Integer ALU cycles 1(ADD, SUB), 3(MUL), 

20(DIV) 

 

5. Experimental results 
 

Our experimental results are shown in Figure 3. 

We evaluated the overall performance of Stockham 

FFT in PIM, compared with CPU. In future work, we 

plan to compare PIM against GPGPU.  

 

 
Figure 3. Simulation results 

 

With parallel processing, PIM predominates over all 

input sizes. When input size is increasing, especially, 

PIM performance gain increases. Because of the 

more complicated memory access patterns, PIM is 

more powerful in large input sizes. The result shows, 

in short, 4.22x of maximum performance gain, and 

2.32x of average performance gain. 

 

6. Conclusion 

 
In this paper, we proposed a novel PIM 

architecture for Stockham FFT. Offloading FFT 

computations into PIM-side, proposed PIM achieves 

2.32x average performance gain against CPU. We 

will further investigate PIM architecture for other 

applications. 
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